
Prototyping Model

Spiral Model

specialized process models

Prototyping Model

 The prototyping model can be considered to be an extension of the waterfall

model.

 This model suggests building a working prototype of the system, before

development of the actual software.

 A prototype is a crude implementation of a system.

 The prototype is developed based on the currently known requirements.

 Development of the prototype obviously undergoes design, coding, and test but

each of these phases is not done very formally or thoroughly.

 Prototyping is an attractive idea for complicated and large systems for which there

is no manual process or existing system to help determine the requirements.

 By using this prototype, the client can get an actual feel of the system, because

the interactions with the prototype can enable the client to better understand the

requirements of the desired system.

Prototyping Model

There are 2 approaches for this model:

 Rapid Throwaway Prototyping

 Evolutionary Prototyping

 Rapid Throwaway Prototyping –

This technique offers a useful method of exploring ideas and getting customer

feedback for each of them.

 In this method, a developed prototype need not necessarily be a part of the

ultimately accepted prototype.

 Customer feedback helps in preventing unnecessary design faults and hence,

the final prototype developed is of a better quality.

 Evolutionary Prototyping –

 The prototype developed initially is incrementally refined on the basis of

customer feedback till it finally gets accepted.

 In comparison to Rapid Throwaway Prototyping, it offers a better approach

which saves time as well as effort.

 This is because developing a prototype from scratch for every iteration of the

process can sometimes be very frustrating for the developers.

 Advantageous

 The resulting system is easier to use

 User needs are better accommodated

 Problems are detected earlier

 The design is of higher quality

 The resulting system is easier to maintain

 The development incurs less effort

 Disadvantages of using Prototype Model :

1. This model is costly.

2. It has poor documentation because of continuously changing customer requirements.

3. There may be too much variation in requirements.

4. Customers sometimes demand the actual product to be delivered soon after seeing an
early prototype.

5. There may be sub-optimal solutions because of developers in a hurry to build
prototypes.

6. Customers may not be satisfied or interested in the product after seeing the initial
prototype.

7. There is certainty in determining the number of iterations.

8. There may be incomplete or inadequate problem analysis.

9. There may increase the complexity of the system.

Spiral Model

Spiral Model

 This Spiral model is a combination of iterative development process

model and sequential linear development model

 The spiral model, originally proposed by Boehm in 1988,

 It is an evolutionary iterative software process model that couples

the iterative nature of prototyping with the controlled and

systematic aspects of the linear sequential model. (water fall model)

 Using the spiral model, software is developed in a series of

incremental releases.

 During early iterations, the incremental release might be a model or

prototype.

 During later iterations, increasingly more complete versions of the

engineered system are produced.

 This model got its name from the appearance of its diagrammatic

representation that looks like a spiral with many loops

 The exact number of loops of the spiral is not fixed and can vary

from

Spiral Model

 Quadrant I: The objectives are investigated, elaborated, and

analysed.

 Based on this, the risks involved in meeting the phase objectives

are identified.

 In this quadrant, alternative solutions possible for the phase under

consideration are proposed.

 Quadrant 2: During the second quadrant, the alternative solutions

are evaluated to select the best possible solution.

 To be able to do this, the solutions are evaluated by developing an

appropriate prototype.

 Quadrant 3: Activities during the third quadrant consist of

developing and verifying the next level of the software.

 At the end of the third quadrant, the identified features

have been implemented and the next version of the

software is available.

 Quadrant 4: Activities during the fourth quadrant concern

reviewing the results of the stages traversed so far (i.e. the

developed version of the software) with the customer and

planning the next iteration of the spiral.

Advantages
 Risk Handling: Spiral Model is the best development model to follow

due to the risk analysis and risk handling at every phase.

 Good for large projects: It is recommended to use the Spiral Model in

large and complex projects.

 Flexibility in Requirements: Change requests in the Requirements at

later phase can be incorporated accurately by using this model.

 Customer Satisfaction: Customer can see the development of the

product at the early phase of the software development and thus, they

habituated with the system by using it before completion of the total

product.

Disadvantages
 Complex: The Spiral Model is much more complex than other SDLC

models.

 Expensive: Spiral Model is not suitable for small projects as it is

expensive.

 Too much dependable on Risk Analysis: The successful completion of

the project is very much dependent on Risk Analysis. Without very

highly experienced expertise, it is going to be a failure to develop a

project using this model.

 Difficulty in time management: As the number of phases is unknown

at the start of the project, so time estimation is very difficult.

 Specialized Process Models

 Specialized process models adopt many of the characteristics of one or

more of the traditional models and are generally applied when a

specialized or narrowly defined software engineering approach is

chosen.

 The following are some of the specialized process models:

 Component-Based Development

 The Formal Methods Model

 Aspect-Oriented Software Development

Specialized software

process models

Specialized software process models

 Component based development-------Reuse

 Formal ----Mathematical Specifications

 Aspect oriented s/w development

methodological approach

 Unified Method--------diagrammatic representation(UML,Usecase)

Component-based software engineering

 It is a reuse-based approach to defining, implementing and composing

loosely coupled independent components into systems.

 Component-based development emphasizes the design and

development of software systems with the help of reusable software

components.

 The primary objective of component-based architecture is to ensure

component reusability.

 A component is a modular, portable, replaceable, and reusable set of

well-defined functionality that encapsulates its implementation and

transferring it as a higher-level interface.

 A set of pre-built, standardized software components are

made available to fit a specific architecture for some

application domain and the application is then assembled

using these components.

 There are many standard component frameworks such as

COM/DCOM, JavaBean, EJB, CORBA, .NET, web services,

and grid services.

Component-based software engineering

 Advantages:

 Components-based systems are easier to assemble and therefore less

costly to build than systems constructed from discrete components.

 Components-based systems also offers increased quality, accelerated

development and reduced risk.

 It allows for component reuse

 A component-based approach accelerates development

 It easily integrates into the development process

 Component-based development optimizes the requirements design

process

 It speeds up the transition from design to development.

 Disadvantages:

 Finding suitable components which fit the architectural design of the

software to be developed may be sometimes difficult because gaps

exist between the component features and the software requirements.

 Component-based development has not been widely adopted in

domains of embedded systems because of the inability of this

technology to cope with the important concerns of embedded systems

like resource constraints, real time or dependability requirements

 Component-based software development is young, therefore long term

maintainability is still unknown.

 formal methods

 The Formal Methods Model is an approach to software

development that applies mathematical methods or techniques to

the process of developing complex software systems.

 The approach uses a formal specification language to define each

characteristic of the system.

 Such formal methods provide frameworks within which software

developer can specify, develop, and verify systems in a systematic,

rather than ad hoc manner.

 For improving reliability and robustness of design

 When formal methods are used during development, they provide a

mechanism for eliminating many of the problems like ambiguity,

incompleteness, and inconsistency that are difficult to overcome using

other software engineering paradigms through the application of

mathematical analysis.

 When formal methods are used during design, they serve as a basis for

program verification and therefore enable you to discover and correct

errors that might otherwise go undetected.

 Formal specifications can function as a guide to requirements.

 In analysis, formal methods provide the description of functions by

which the program can be verified.

 Different types of Formal Specification Languages

 1. Model Based Languages:

 In Model Based Languages, the specification is expressed as a system state model using well

understood mathematical entities such as sets, relations, sequences and functions.

 Operations of a system are specified by defining how they affect the state of the system

model. The most widely used notations for developing model based languages are Vienna

Development Method (VDM).

 2. Algebraic Specification Languages: Algebraic specification languages describe the

behaviour of a system in terms of axioms that characterize its desired properties. Examples

of algebraic specification languages include OBJ and the Common Algebraic Specification

Language (CASL).

 3. Process oriented Languages: In these process oriented languages processes are denoted

and built up by expressions and elementary expressions, respectively, which describe

particularly simple processes. Example of process oriented languages is Communicating

Sequential Processes (CSP).

 Formal methods-------- levels

 1. Formal Specification: During the formal specification phase, the

Software Engineer rigorously defines a system using a formal

specification language that has its own syntax and semantics and a set

of relation.

 It describes what the system should do, not (necessarily) how the

system should do it.

 Given such a specification, it is possible to use formal verification

techniques to demonstrate that a candidate system design is correct

with respect to the specification.

 This process of formal specification is similar to the process of

converting a word problem into algebraic notation.

 2. Formal development and verification: Formal development process involves

iteratively refining a formal specification to produce the finished system.

 Formal Methods differ from other specification systems by their heavy

emphasis on provability and correctness.

 By building a system using a formal specification, the designer is actually

developing a set of theorems about his system.

 By proving these theorems correct, the formal methods ensures the

correctness of the system.

 The process of proving or disproving properties of the software system against

a formal specification is known as formal verification.

 3. Implementation: Once the model has been specified and verified, it is

implemented by converting the specification into code..

 Advantages:

 Discovers ambiguity, incompleteness, and inconsistency in the

software.

 Offers defect-free software.

 Incrementally grows in effective solution after each iteration.

 This model does not involve high complexity rate.

 Formal specification language semantics verify self-consistency.

 Disadvantages:

 The development of formal models is currently quite time consuming and

expensive.

 Because few software developers have the necessary background to apply

formal methods, extensive training is required.

 It is difficult to use the models as a communication mechanism for

technically unsophisticated customers.

